

Lower Fox River Statistical Methodology for Long Term Monitoring Plan Update

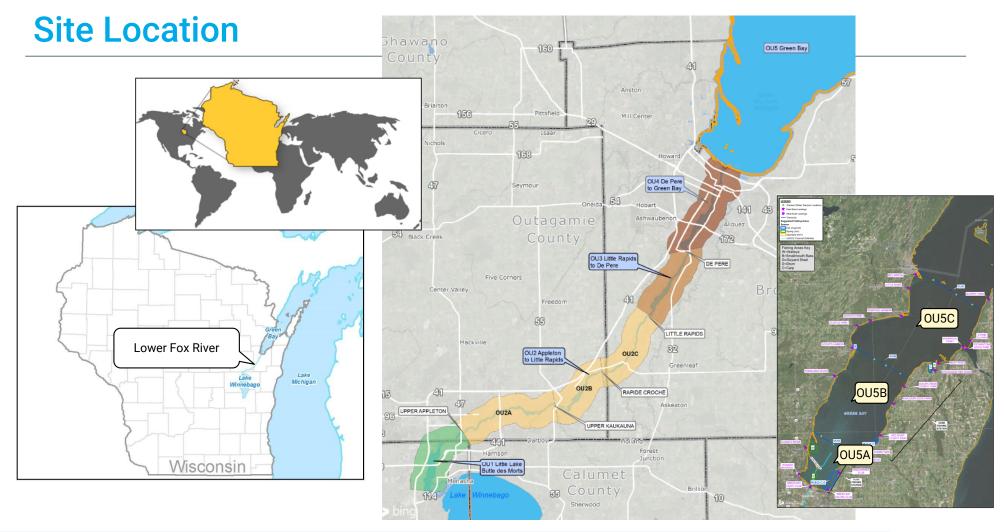
SMWG Fall Sponsor Forum

November 13, 2024 | Stephen G. Lehrke, Ph.D.

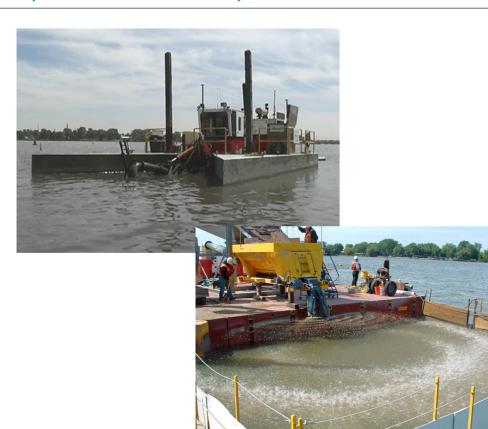
Co-authors:

John Wolfe, Ph.D., P.E., BCEE (LimnoTech, Los Angeles, CA, USA) Paul Montney (Georgia-Pacific, Atlanta, GA, USA) William Hartman (Glatfelter Corporation, Kewaskum, WI, USA) Sharon Kozicki, P.G., MBA (Foth, Green Bay, WI, USA)

Overview


- Summary of Project Background and Remedial Action
- Long-Term Monitoring Plan (LTMP) Scope and Objectives
- Collaborative Update to LTMP

Summary of Project Background and Remedial Action



Objectives of Remediation

- Address sediment RAL (1 ppm) or achieve OU SWAC goals
- Address RAOs from ROD and ROD Amendment:
 - Achieve surface water quality criteria
 - Protect humans who consume fish
 - Protect ecological receptors
 - Reduce transport of PCBs into Green Bay and Lake Michigan

Remedy Options Performed (2004 – 2020)

- Dredge (6.5M CY)
- Sand Cover (720 Acres)
- Engineered Cap (268 Acres)
- OU2 and OU5 Areas of Monitored Natural Recovery (MNR)

LTM Scope and Objectives

FR-LTMP Monitoring Objectives

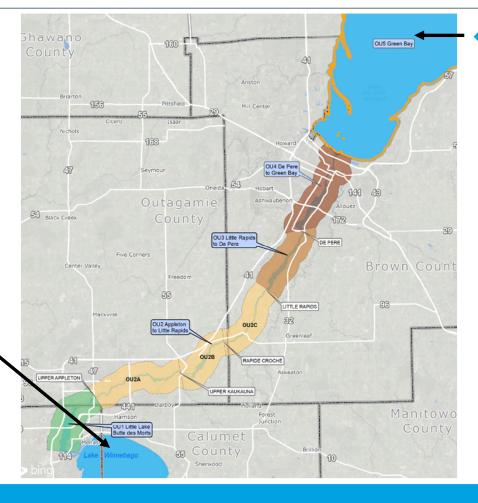
- Monitor risk reductions/progress in:
 - water and fish tissue concentrations
 - achieving human health risk goals
 - achieving ecological risk goals
 - PCB loadings to Green Bay

- Pathways:
 - Human health fish species
 - Walleye/Smallmouth Bass
 - Ecological fish species
 - Carp/Drum
 - Young-of-year fish species
 - Gizzard Shad
 - Water quality
 - Sediment quality

LTM Collection Events

 LTM surface water and fish tissue monitoring activities are guided by the OU1-LTMP (2011) and the FR-LTMP (2009)

	OU1	OU2	OU3	OU4	OU5
Baseline (2006-07)	✓	✓	✓	✓	✓
2010	✓				
2012	✓	✓	✓		
2014		✓	✓		
2018	✓	✓	✓		
2021				✓	✓
2022	✓	✓	✓	✓	✓


 Baseline and LTM events serve to monitor progress towards achieving the RAOs

FR-LTMP Exit Criteria

- Achievement of the risk-reduction goals is demonstrated through exit criteria formulated under DQOs.
- Comparison to:
 - Background Concentrations
 - Risk-Based Target Concentrations
 - SWAC-Reduction Target
- Evaluation of:
 - Recovery Rate
 - Laboratory Blank Contamination Levels

Background Reference Data

OU5C

OU4, OU5A/B Surface Water

Lake Winnebago

OU1, OU2, OU3
 Surface Water
 and Fish Tissue

Weight of Evidence

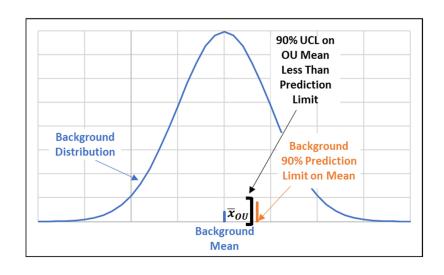
 The FR-LTMP also provides for a WoE evaluation during each 5-year review to assess whether the preponderance of data indicates the achievement of risk-reduction goals

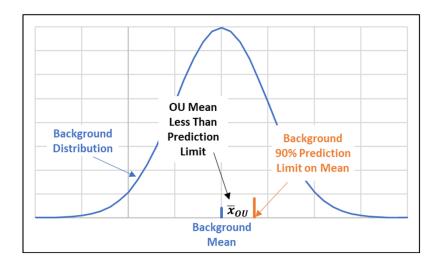
Collaborative Update to LTMP

FR-LTMP Clarification of Exit Criteria

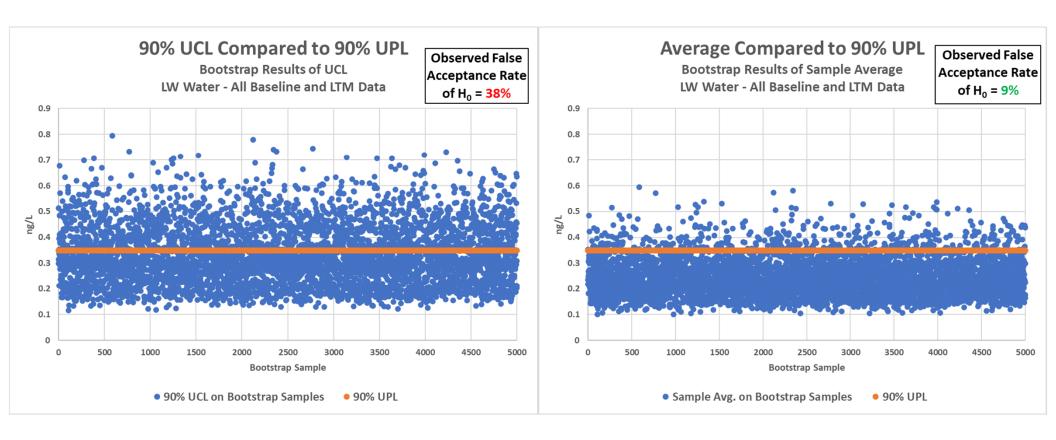
- LTMP has multiple monitoring Exit Criteria, and Agency-PRP Working Group worked collaboratively to clarify those criteria. Updated LTMP, 2021 and 2022 Reports, and upcoming Five Year Review will reflect those changes.
 - One key criterion requiring attention addresses comparisons of site conditions to background. The remainder of this presentation focuses on the update to that criterion.
- Under corrective action, the presumption (null hypothesis) is that site concentrations exceed background.
 - Then the burden on monitoring, to justify an exit from monitoring requirements, is to collect enough data to show that the site very likely does not exceed background.
- We don't expect site concentrations to be reduced below background.
 - So how close to background is close enough to be "equivalent" to background?

FR-LTMP Statistical Analyses

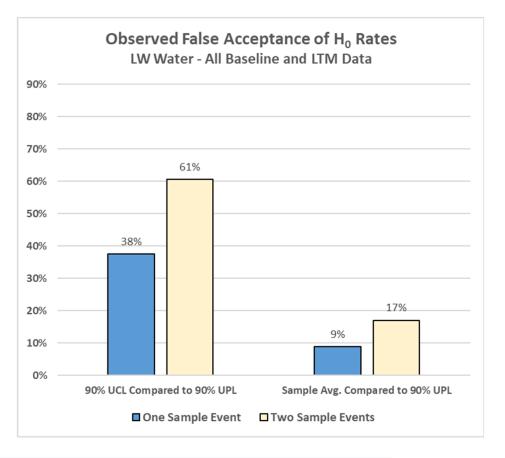

- 2009 FR-LTMP Statistical Hypothesis Statements
- Exit Criteria 1: Comparison to Background
 - H_{01} : Water and fish tissue contaminant concentrations are higher than reference areas.
 - lacktriangledown H_{A1} : Water and fish tissue contaminant concentrations are less than or equivalent to reference areas.
- "Alternative Hypothesis 1 will be accepted when it can be shown that Site monitoring data from a particular OU is equivalent to background data with an appropriate level of statistical confidence."


Defining Equivalence for the FR-LTMP

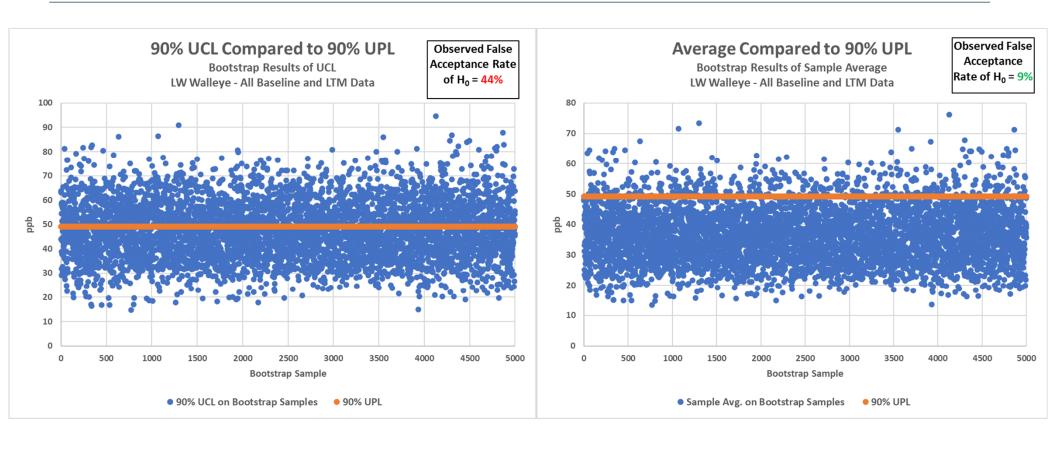
- Tests of equivalence: Are Site Data > Background Data * an Equivalence Ratio?
- The goal of the LTMP is to collect water and fish tissue data that will achieve:
 - α (Type I error) = 0.1 (90% confidence)
 - β (Type II error) = 0.2 (80% percent statistical power)
- To develop a test with these error rates as goals, simulation may be performed.
 - Hypothetical Sample Site Data are drawn, with n = sample sizes for an LTM round, from the same distribution as upstream Background Data (Lake Winnebago).
 - Given a statistical test, is the hypothetical data determined to be equivalent to the background data?
 - What Site and Background statistics should be compared? What sample sizes are needed?
 - Specific answers depend on site data distributions and project goals.


FR-LTMP Background Exit Criteria

 FR-LTMP: Background criteria may be defined using a 90% upper prediction limit on the mean to avoid concluding a Site is significantly more contaminated than background when in fact it is not.

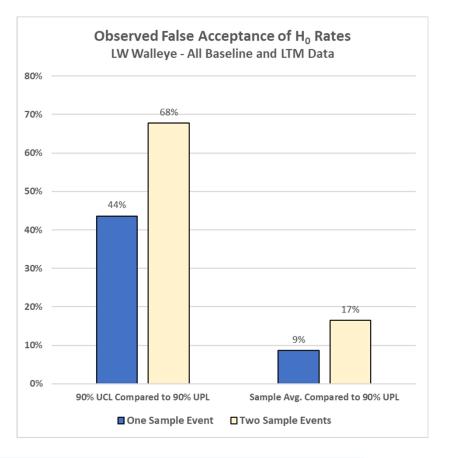


Background Exit Criteria Simulation for Surface Water



Surface Water Simulation with Confirmation Event

 When incorporating a second confirmation event, the H₀ false acceptance rates increase from 38% to 61% for the UCL to UPL comparison, and from 9% to 17% for the sample average to UPL comparison.



Background Exit Criteria Simulation for Walleye

Walleye Simulation with Confirmation Event

 When incorporating a second confirmation event for walleye, the H₀ false acceptance rates increase from 44% to 68% for the UCL to UPL comparison, and from 9% to 17% for the sample average to UPL comparison.

Covariate Data

- Additional consideration covariate data
 - Factors of interest can be more readily assessed when covariate noise is reduced

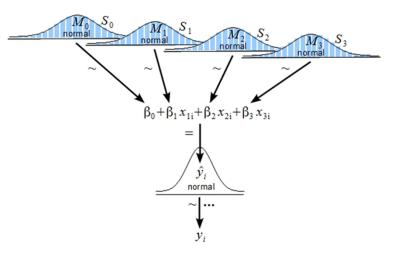
<u>Water</u>

- > TOC
- > TSS
- Temperature
- Turbidity
- Flow Rate

Fish Tissue

- > Fish Length
- Fish Weight
- Percent Lipids

Regression Model for Background Comparison


Covariate variation may be addressed through multivariate regression

$$Ln(PCB) = \beta_0 + \beta_1(Site) + \beta_2(Covariate_1) + \beta_3(Covariate_2) + ... + e$$

Site = "0" for background and "1" for OU data

 The above regression equation may be rearranged as:

$$e^{\beta_1} = \frac{PCB_{|Site=1}}{PCB_{|Site=0}} \sim \frac{\mu_{OU}}{\mu_{Background}}$$

Regression Model Hypothesis Testing

- The regression approach can therefore be formulated as a test of equivalence: Are Site Data > Background Data * an Equivalence Ratio?
- The regression approach allows testing the ratio of the OU mean to the Background mean:

$$H_10: \frac{\mu_{OU}}{\mu_{Background}} \ge Equivalence Ratio$$
 $H_1A: \frac{\mu_{OU}}{\mu_{Background}} < Equivalence Ratio$

 The logarithmic regression model approach was utilized in previous LTM reports, but without an agreed equivalence ratio

Regression Model Equivalence Ratio

- The goal of the LTMP is to collect water and fish tissue data that will achieve:
 - α (Type I error) = 0.1 (90% confidence)
 - β (Type II error) = 0.2 (80% percent statistical power)
- Simulation modeling was performed of the background walleye data to determine an equivalence ratio that would meet the 20% Type II error goal.
- Equivalence ratio = 1.3

	Ratio of 90% UPL to Sample Mean for Lake Winnebago Baseline Through 2018 LTM Data
Carp	1.5
Drum	1.3
Gizzard Shad	1.3
Smallmouth Bass	1.4
Walleye	1.3
Surface Water	1.4

 1.3 also generally matches the ratio observed between the background sample mean and UPL for the historical surface water and fish tissue data of all species

Conclusion

- Using the multivariate regression model approach to stabilize the data, along with a 90% UCL on the ratio of the Site to Background geometric mean, meets the LTMP Type I error goal of 10% and Type II error goal of 20%.
- The equivalence ratio of 1.3 was found to be a value that provides for a comparison that does not require OU Site data to achieve concentrations better than background in order to meet exit criteria.
- The 1.3 equivalence ratio was applied to surface water and all fish tissue species in the LTMP update.
- The regression method also continues to be used in the LTMP update for the Exit Criteria 3 comparison to SWAC-reduction target.
- Collaboration between the Responsible Parties and Agency/Oversight Team resulted in identification of potential issues with proposed statistical comparisons and led to innovative solutions.